Nikon ®
Nikon Healthcare: A Century of Microscopy
Nikon Instruments Inc. | Americas
  • es Change Region
  • Global Site
  • Artboard 1

Select Your Region and Language

Products and Promotions may differ based on your selected Region.

Americas

  • en English
  • es Español
  • fr Français
  • pr Português

Europe & Africa

  • en English
  • de Deutsch
  • es Español
  • fr Français
  • it Italiano
  • pr Português

Japan

  • ja 日本語

Korea

  • ko 한글

Chinese Mainland

  • zh 简体中文

Asia, Oceania & Middle East

  • en English

Return to the top of the page

  • Productos
  • CRO
  • Aplicaciones
  • Recursos
  • BioImaging Centers
  • Servicio
  • Contacto

Productos de microscopía

Light Microscopes

  • Microscopios invertidos
  • Microscopios verticales
  • Microscopios de Polarización
  • Microscopios estereoscópicos

Advanced Imaging Systems

  • Microscopios confocales y multifotónicos
  • Microscopía de super-resolución
  • Análisis de células
  • Fotostimulación y TIRF

Microscopios digitales

Software

Cámaras

Óptica

Accesorios

OEM

Productos descontinuados

Nikon BioImaging Labs

Nikon BioImaging Labs provide contract research services for microscope-based imaging and analysis to the biotech, pharma, and larger research communities. Each lab's full-service capabilities include access to cutting-edge microscopy instrumentation and software, but also the services of expert biologists and microscopists, who are available to provide quality cell culture, sample preparation, data acquisition, and data analysis services.

Boston, United States

Europe

Shonan, Japan

Aplicaciones

Ciencias Biológicas

  • Aprendizaje profundo en microscopía
  • Descubrimiento de medicamento
  • Electrofisiología
  • Captura de imágenes de alto rendimiento
  • Captura de imágenes de células vivas
  • Microinyección
  • Imágenes a nanoescala
  • Adquisición de imágenes de organoide y órgano en chip
  • Medicina regenerativa
  • Cultivo de tejidos
  • Adquisición de imagened de tejido y organismo completo

Investigación clínica

  • Assisted Reproductive Technology (ART)
  • Gout Testing
  • Imaging Fixed Slides
  • Slide Scanning

Education

OEM

Recursos

Featured Resources

  • PubScope

    Search and filter over 125,000 Open Access Articles that utilize Nikon products and supported third party systems.

  • Prueba gratuita de Denoise.ai

    Denoise.ai elimina automáticamente el ruido de Poisson de las imágenes confocales; pruébelo gratis.

  • Descargas de software / firmware

    Descargue software y programas de firmware para productos de microscopios Nikon.

  • Nikon Small World

    El sitio web de Nikon Small World: todo lo relacionado con los concursos de imagen/video del microscopio.

  • Guías online

    Guías paso a paso para alinear y operar microscopios Nikon selectos.

  • MicroscopyU

    MicroscopyU de Nikon es una de las principales fuentes de información educativa sobre microscopía óptica.

  • Selector de objetivos

    Encuentre el objetivo Nikon adecuado para su flujo de trabajo.

Browse Resources

Servicio

Sobre nosotros

  • Noticias
  • Perfil de la compañía
  • Carreras
  • Sontenibilidad
  • Casa
  • CRO
  • Europe
  • Applications
  • Histological Image Segmentation

Nikon BioImaging Labratories

Europe

  • Boston, United States
  • Shonan, Japan
  • Visión general
  • Applications
  • Research Services
  • Expertise
  • FAQs
  • Resources
  • News & Events

Histological Image Segmentation

Histological image analysis is a crucial aspect of medical research and diagnostics. It involves the microscopic examination of tissue samples that have been stained to highlight different cellular components and structures. This analysis allows pathologists to diagnose diseases, understand cellular interactions, and conduct detailed anatomical studies. The accuracy of histological analysis is vital, as it directly impacts clinical decisions and the understanding of complex biological processes.

Human cervical tissue with H&E staining
Tumor mass segmentation
Red blood cells segmentation

Challenges

The intricacies of histological image segmentation stem from the way these images are typically obtained. In histology, the stains and dyes applied to tissue samples are absorptive rather than fluorescent. They are visualized in full color under white light illumination, and unlike in fluorescence microscopy, the data from various stains are not distinctly separated based on light emission. Thresholding, a simple segmentation method that separates objects based on pixel intensity, often falls short due to the variability in stain absorption and the complex morphology of tissues, including the presence of various cell types with diverse shapes and sizes. Consequently, the segmentation and analysis of histological images have traditionally relied heavily on manual inspection by experienced professionals, a process that is both time-consuming and subjective.

Solutions

Artificial intelligence (AI) offers a solution for the precise and efficient segmentation of histological images. Deep learning-based algorithms can segment images of complex tissue samples with human-like accuracy, learning from annotated examples to identify numerous features swiftly. Once trained, AI can quickly discern thousands of elements in images, streamlining pre-clinical research by reducing manual effort and enhancing the discovery of disease pathways and treatment options.

Method

In our study, we utilized AI to enhance the analysis of histological slides, focusing on a human cervical cancer specimen stained with the conventional Hematoxylin and Eosin (H&E) method. This staining technique is intentionally nonspecific—hematoxylin colors nuclei blue and eosin imparts a pink hue to the cytoplasm, thus providing a stark contrast that facilitates the examination of the entire tissue section. Despite its simplicity, the H&E method introduces challenges in segmentation, as it requires careful consideration of the brightness of the stain and the diverse sizes and shapes of cellular structures.

To address these challenges, we developed multiple AI networks, each tailored to identify and differentiate features across varying scales, from large tumor masses down to red blood cells and single cell nuclei. These networks underwent a training process using a small, annotated segment of the histological image and were subsequently deployed to analyze the full extent of the tissue sample.

Results

Our analysis revealed that the tumor regions accounted for approximately 21% of the total tissue area examined. The AI-driven segmentation process successfully delineated around 360,000 nuclei, with 132,000 of those located within the tumor areas.

Conclusion

The application of the trained neural networks allowed for the rapid processing of an extensive 9.5 x 7 mm image in a matter of seconds. These results are promising for future studies, as the networks could be adapted for analyzing other H&E-stained tissues, either in their current form or with minor modifications to accommodate different sample characteristics, thus significantly accelerating the pre-clinical research workflow.

Contacto

  • Casa
  • CRO
  • Europe
  • Applications
  • Histological Image Segmentation
Nikon ®
  • LinkedInLinkedIn
  • BlueskyBluesky
  • FacebookFacebook
  • InstagramInstagram
  • ThreadsThreads
  • YouTubeYouTube
  • XX

Contact Nikon Instruments Inc.

+1-631-547-8500
+1-800-52-NIKON (within the U.S.A. only)
nikoninstruments.us@nikon.com

Sobre nosotros

  • Noticias
  • Eventos
  • Perfil de la compañía
  • Carreras
  • Sontenibilidad
  • Bienestar

Popular Links

  • Últimas noticias y novedades
  • Selector de objetivos
  • Resolution Calculator
  • PubScope
  • OEM
  • Nikon Small World
  • MicroscopyU

Otros Productos Nikon

  • Productos de imagen
  • Productos de metrología industrial
  • Sistemas de litografía semiconductores
  • Sistemas de litografía FPD
  • Contacto
  • Mapa del sitio
  • Intimidad
  • Cookie settings
  • Do Not Sell or Share My Personal Information
  • Términos de Uso
  • Carreras profesionales

© 2025 Nikon Instruments Inc.