Nous surveillons attentivement la situation concernant le COVID-19 (coronavirus) et observons les indications des Centres de contrôle et de prévention des maladies (CDC) et des autorités sanitaires fédérales, régionales et locales. Apprenez-en davantage sur les mesures que nous avons mises en place.

 

Système de microscope à super résolution

Articles applications

3D Super-resolution imaging of localization of H3K27me3, Lamin AC and DNA

octobre 2020

In this Application Note, we introduce examples of imaging (using the N-SIM super-resolution microscope) performed by pharmaceutical scientist Dr. Tsukasa Oikawa of the Department of Molecular Biology, Hokkaido University Graduate School of Medicine. In the absence of p53, the product of a tumor suppressor gene TP53, K27-trimethylation of histone H3 (H3K27me3) was observed to occur at the perinuclear regions during DNA replication. The researcher then wanted to know the positional relationship between H3K27me3, the nuclear membrane represented by Lamin A/C, and DNA.


Structured Illumination Microscopy (SIM) Imaging Comparison with Confocal

septembre 2018

The super-resolution microscopy technique structured illumination microscopy (SIM) imaging of dendritic spines along the dendrite has not been previously performed in fixed tissues, mainly due to deterioration of the stripe pattern of the excitation laser induced by light scattering and optical aberrations.


Reflectance imaging for visualization of unlabeled structures using Nikon A1 and N-SIM

janvier 2018

Reflectance imaging allows the user to form an intensity image from light backscattered by the sample. Highly reflective markers, including a variety of nanoparticles, allows for imaging with very high signal-to-noise and virtually free of photobleaching, ideal for both confocal and structured illumination microscopies.


N-SIM for Quantitative Ultra-Structural Analyses of the Nuclear Lamina

octobre 2016

Super-resolution Structured Illumination Microscopy (SIM), available from Nikon via the N-SIM and N-SIM E systems, allows for the observation of details inaccessible to traditional microscopes, such as confocal and widefield. In this application note we see how the N-SIM system enables quantitative multi-color evaluation of the distribution of different nuclear lamin proteins and the structures they form.