Cell Culture Observation System

Application Notes

Survival Analysis of Human In Vitro-derived Neurons Using New Live Cell Extended Time-lapse Imaging Technology

January 2011

In this application note we demonstrate the Nikon BioStation CT for long-term live-cell imaging of stem cell-derived motor neurons – tracking key attributes such as cell body size and neurite length before, during, and after treatment with different stressors. This approach provides a standardized method for drug discovery studies in neurodegenerative disease models.

Development of an Integrated Bioprocess for Production of NK-92 Cells for Immunotherapy

January 2014

Anti-cancer NK-92 lymphocytes are promising for application in immunotherapies. This application note explores a comprehensive workflow for producing clinical-grade NK-92 cells, using Nikon’s BioStation CT to monitor NK-92 phenotype and potency.

Embryonic Stem Cell Responses to Commercially Available Substrates for Stem Cell Maintenance

January 2011

In collaboration with the Centre for Commercialization of Regenerative Medicine (CCRM) we compare the performance of 8 common substrates for stem cell growth and maintenance by developing an assay utilizing the Nikon BioStation CT high content screening microscope and incubation system. Fluorescence imaging of Oct4 is used as a marker for pluripotency.

Establishment of an Algorithm for Automated Detection of iPS/non-iPS Cells Under a Culture Condition by Non-Invasive Image Analysis

January 2011

In this application note we detail an automated high throughput method for observing and classifying stem cell colonies with a standardized algorithm and using the Nikon BioStation CT. Automated image analysis discriminates stem cell colonies from non-stem cell colonies using phase contrast imaging and subsequent analysis of distinguishing morphological features.

Automated, Non-Invasive Culture, and Evaluation System for iPS Cells under Neural Differentiation Process

January 2011

This application note details an integrated workflow for the culture, observation, evaluation, and differentiation of induced pluripotent stem (iPS) cells into neurons, introducing image processing methods for detecting neural rosettes and neurite outgrowth – two important morphological checkpoints in neural differentiation. Automated imaging for this assay is performed using a Nikon BioStation CT.

Generation of a Growth Curve for iPS Cells in a Feeder-Free Culture by Non-Invasive Image Analysis

January 2011

Long-term time-lapse observation of feeder layer-free stem cell cultures, along with automated detection of stem cell colonies, is demonstrated here using a Nikon BioStation CT system. Growth curves for both differentiated and un-differentiated cells were generated for a time period of about 1 week.

A Non-Invasive Method for Counting Human Pluripotent Stem Cell Numbers by Live Cell Imaging

January 2012

Presented here is a method for counting live pluripotent stem cells using the fluorescent nuclear stain SYTO24 and phase contrast imaging on the Nikon BioStation CT high content screening microscope. The results show that colony coverage area deduced from phase contrast images can be used as an accurate estimator of stem cell count alone, correlating well with haemocytometer-based measurements.

Automated Haematopoietic Colony Forming Cell (CFC) Assay

January 2011

Nikon’s BioStation CT high content live cell screening system is applied in an assay for automated enumeration and identification of haematopoietic colony-forming cells. This assay allows for the identification of multiple colony types, helping distinguish between lineages.

Antitumor Lymphocyte Kinetic Cytotoxicity Assay (Collaboration with CCRM)

January 2013

In this application note we explore the use of the fully robotic Nikon BioStation CT high content screening microscope platform towards quantifying the death rate of a model human leukemia cell line upon co-incubation with anticancer NK-92 lymphocytes. This assay integrates automated imaging of Calcein-AM fluorescence to perform live/dead cell analysis.

Screening Assay for PSC Responses to Substrates

January 2011

An automated imaging-based screening assay for assessing stem cell pluripotency is described. Researchers from Nikon and the Centre for Commercialization of Regenerative Medicine use a Nikon BioStation CT with CL-Quant software to perform stem cell pluripotency maintenance assays in experiments testing feeder cell-free culture vessel substrates. Such commercially available substrates provide a number of process standardization benefits.

Stem Cell Research with Nikon

May 2014

This flyer provides a quick visual orientation of example Nikon products and how they support various research aspects of stem cell biology and regenerative medicine. This includes detection of differentiation markers, routine cell culture checking, time lapse imaging, and more.

Outline of Stem Cell Applications

January 2011

The Nikon BioStation CT cell culture observation system and CL-Quant software provide a powerful platform for stem cell research applications, including automated induced pluripotent stem (iPS) cell colony identification, proliferation analysis, and neural differentiation analysis. Real experimental data is provided for each of these use cases.